Facilitated glutamatergic transmission in the striatum of D2 dopamine receptor-deficient mice.

نویسندگان

  • C Cepeda
  • R S Hurst
  • K L Altemus
  • J Flores-Hernández
  • C R Calvert
  • E S Jokel
  • D K Grandy
  • M J Low
  • M Rubinstein
  • M A Ariano
  • M S Levine
چکیده

Dopamine (DA) receptors play an important role in the modulation of excitability and the responsiveness of neurons to activation of excitatory amino acid receptors in the striatum. In the present study, we utilized mice with genetic deletion of D2 or D4 DA receptors and their wild-type (WT) controls to examine if the absence of either receptor subtype affects striatal excitatory synaptic activity. Immunocytochemical analysis verified the absence of D2 or D4 protein expression in the striatum of receptor-deficient mutant animals. Sharp electrode current- and whole cell patch voltage-clamp recordings were obtained from slices of receptor-deficient and WT mice. Basic membrane properties were similar in D2 and D4 receptor-deficient mutants and their respective WT controls. In current-clamp recordings in WT animals, very little low-amplitude spontaneous synaptic activity was observed. The frequency of these spontaneous events was increased slightly in D2 receptor-deficient mice. In addition, large-amplitude depolarizations were observed in a subset of neurons from only the D2 receptor-deficient mutants. Bath application of the K+ channel blocker 4-aminopyridine (100 microM) and bicuculline methiodide (10 microM, to block synaptic activity due to activation of GABA(A) receptors) markedly increased spontaneous synaptic activity in receptor-deficient mutants and WTs. Under these conditions, D2 receptor-deficient mice displayed significantly more excitatory synaptic activity than their WT controls, while there was no difference between D4 receptor-deficient mice and their controls. In voltage-clamp recordings, there was an increase in frequency of spontaneous glutamate receptor-mediated inward currents without a change in mean amplitude in D2 receptor-deficient mutants. In WT mice, activation of D2 family receptors with quinpirole decreased spontaneous excitatory events and conversely sulpiride, a D2 receptor antagonist, increased activity. In D2 receptor-deficient mice, sulpiride had very little net effect. Morphologically, a subpopulation of medium-sized spiny neurons from D2 receptor-deficient mice displayed decreased dendritic spines compared with cells from WT mice. These results provide evidence that D2 receptors play an important role in the regulation of glutamate receptor-mediated activity in the corticostriatal or thalamostriatal pathway. These receptors may function as gatekeepers of glutamate release or of its subsequent effects and thus may protect striatal neurons from excessive excitation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dopamine and Serotonin-Induced Modulation of GABAergic and Glutamatergic Transmission in the Striatum and Basal Forebrain

Catecholamine receptor-mediated modulation of glutamatergic or GABAergic transmission in the striatum as well as basal forebrain (BF) has been intensively studied during these two decades. In the striatum, activation of dopamine (DA) D2 receptors in GABAergic terminals inhibits GABA release onto cholinergic interneurons by selective blockade of N-type calcium channels. In the BF, glutamatergic ...

متن کامل

Functional disturbances in the striatum by region-specific ablation of NMDA receptors.

To study the role of NMDA receptors in dopamine signaling of the striatum, the brain area that receives glutamatergic inputs from various cortical areas and most dopaminergic inputs, we generated striatum-specific NMDA receptor-deficient mice. The mutant pups showed reduced food intake and retarded growth starting at the second postnatal week and died on approximately postnatal day 20 (P20). Th...

متن کامل

بررسی اثر و مکانیسم های اوپیوییدی و دوپامینرژیک دکسترومتورفان بر پاسخ درد ناشی از صفحه داغ در موش

Background and purpose : Dextromethorphan is a non-competitive NMDÂ receptor antagonist in the glutamatergic system with over 47 years of clinical usage experience as an over-the counter antitussive drug. We previously demonstrated that dextromethorphan modulates the pain threshold in the mouse acetic acid (0.6%,intraperitonealy)-induced writhing test (a tonic and chemical model for chronic p...

متن کامل

The effect of dextromethorphan on apomorphine-induced pecking behavior in chick

Dextromethorphan is an NMDA receptor antagonist in the glutamatergic system. Currently, there are some reports showing that the glutamatergic NMDA receptor mechanism stimulates dopamine release from several brain regions. This effect may in part modulate the stereotyped behaviors of dopaminergic system. The purpose of the present study was to determine the interaction between the blockade of NM...

متن کامل

بررسی اثر و مکانیسم های اوپیوییدی و دوپامینرژیک دکسترومتورفان بر پاسخ درد ایجاد شده با اسید استیک در موش ها با استفاده از تست Writhing شکمی

Background and purpose: Dextromenthorphan is a NMDÂ receptor antagonist in the glutamatergic system. Çurrently, there are good reports showing that the glutamatergic NMDÂ receptor mechanism modulates endogenous opiods and dopamine actions in several brain regions. This effect may in part change pain threshold in various analgesic tests. The purpose of the present study is to determine the mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 85 2  شماره 

صفحات  -

تاریخ انتشار 2001